Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning
نویسندگان
چکیده
Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount such is great significance development. As wind changes greatly by season, time series analysis considered as a natural approach characterize seasonal fluctuation and exponential growth. In this paper, dual integrated hybrid model presented using random forest (RF) incorporate extreme gradient boosting (XGB) with empirical mode decomposition (EMD) fractional order accumulation grey (FSGM). For vertical dimension processing, decomposed into high low frequency components. Then, components are predicted XGB learning machine (ELM), respectively. growth horizontal FSGM applied same month different years. Consequently, proposed can not only be used capture trend but also investigate complex high-frequency variation. To validate model, it analyze characteristics for China from 2010 2020, results compared popularly known models; illustrate that superior other models examining series.
منابع مشابه
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولGrey Prediction Model for Forecasting Electricity consumption
Accurate prediction of the future electricity consumption is crucial for production electricity management. Since the storage of electrical energy is very difficult, reliable and accurate prediction of power consumption is important. Different approaches for this purpose were used. In this paper, Grey model (1,1) based on grey system theory has been used for forecasting results. Annual electric...
متن کاملImproved Hybrid Model Based on Support Vector Regression Machine for Monthly Precipitation Forecasting
In this paper, we study the time series techniques for the monthly precipitation forecasting. The techniques used in this study are moving average procedure, support vector regression machine, and seasonal autoregressive integrated moving average model and hybrid procedure. Firstly, the moving average procedure is employed to find the trend; secondly, the support vector regression machine is ap...
متن کاملA new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related ...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2022
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su142215403